201. The Stereoselectivity of the Alkylation of the Dianion of Ethyl 2-Hydroxy-6-methylcyclohexanecarboxylates: Control of Stereochemistry at Three Adjacent Stereogenic Centers

by Georg Fráter*, Wulf Günther, and Urs Müller

Givaudan Forschungsgesellschaft AG, CH-8600 Dübendorf

(10.X.89)

Yeast reduction of *rac*-ethyl 2-methyl-6-oxocyclohexanecarboxylate (*rac*-1) yielded selectively (+)-ethyl 2-hydroxy-6-methylcyclohexane carboxylate (+)-2 (*Scheme 1*) which has been alkylated with 5-iodo-2-methylbut-2ene by the dianion method to furnish the 4-methylbut-3-enyl derivat 3 (*Scheme 3*). NaBH₄ reduction of (+)-1 led to three hydroxy-carboxylates (-)-2, (+)-5, and (-)-6 (*Scheme 4*). Allylation of the dianion of (+)-5 afforded (+)-7.

Introduction. – A recent publication of *Herradón* and *Seebach* [1] motivated us to complete some work started ten years ago. We consider it supplementary to *Seebach*'s contribution [1] as well as to our own work in this field [2] [3]. After having investigated the alkylation of the dianion of ethyl (1R,2S)-2-hydroxycyclohexanecarboxylate, obtained from the yeast reduction of the corresponding cyclohexanone [2] [3], it is of considerable interest to investigate both yeast reduction and alkylation in case of an additional Me group at C(6).

Results and Discussion. – Reduction of the *rac*-ethyl 2-methyl-6-oxocyclohexanecarboxylate (*rac*-1) [4] with baker's yeast furnished one hydroxy-carboxylate (+)-(1*R*,2*S*,6*R*)-2 (*Scheme 1*) in 27% yield with 82% e.e. and unreacted starting material (+)-(6*S*)-1 in 36% yield. The configuration of (+)-2 can be deduced from the ¹H-NMR spectrum on the basis of $J(2,1) \approx 4$ Hz and $J(2,3ax) \approx 9$ Hz, which are conclusive for the

axial position of the ester and the equatorial position of the OH group in (+)-2. On the other hand difference NOE studies revealed a NOE between $H_{ax}-C(2)$ and $H_{ax}-C(6)$, indicating that the Me group adopts an equatorial position.

The absolute configuration of (+)-2 was established by oxidation of (+)-2 leading to (-)-1. Keto-ester (-)-1 was shown by ¹H-NMR, to be a mixture of ketone and the corresponding tautomers (*ca.* 6:4) which furthermore indicated that both COOEt and Me groups are in pseudoequatorial positions. Compound (-)-1 displays a relatively weak positive CD effect ($\Delta \varepsilon$ (288 nm) = +0.26) clearly indicating the (1*S*,6*R*)-configuration (*Scheme 2*).

The optical purity of (+)-2 was determined in the presence of $Eu(hfc)_3$: both the d of the CH_3 -C(6) and the t of CH_3CH_2O groups of the enantiomers separated into two pairs of signals in a ratio of 91:9.

Thus, the yeast reduction of 1 turned out to be analogous to that of ethyl 2-oxocyclohexanecarboxylate [3][5] (see also [6]). Both give the (1R,2S)-configurated hydroxy-carboxylate with very high diastereoselectivity.

Alkylation of the dianion of (+)-2 in analogy to earlier work [2] [3] [7] (Scheme 3) furnished, in a high yield (85%), compound 3, which happened to exhibit no optical activity at the Na D-line. The equatorial position of HO-C(2) and $CH_3-C(6)$ in 3 is easily established by 'H-NMR on the basis of the large J(ax,ax) value of 10 Hz for H-C(2) and H-C(6). The configuration on C(1), *i.e.* the stereochemical mode of the alkylation was deduced with the help of a differential NOE experiment between the

 H_{ax} -C(2) and α H-C(2') of the side chain. *Jones* oxidation of the alkylation product 3 yielded the cyclohexanone (-)-4ⁱ).

Reduction of (+)-1²), *i.e.* the starting material which was recovered after reduction with baker's yeast (*vide supra*), with NaBH₄ gave a mixture of three products, (+)-5, (-)-2, and (-)-6 in the ratio of *ca.* 4:3:3 (*Scheme 4*). The main product is (+)-5 with two equatorial Me and COOEt groups and an axial OH group (for ¹H-NMR, see *Exper. Part*).

The second alcohol eluted from the column is (-)-2, which is identical to the yeastreduction product except for its optical rotation. The $[\alpha]_D^{20}$ value of -2.29 indicates a 28% e.e., relative to the measured $[\alpha]_D^{20}$ value of $+6.65^\circ$ for (+)-2 with 82% e.e. This has been confirmed by optishift experiments. The most polar alcohol turns out to be (-)-6 with equatorial arrangement of all substituents. This follows from its ¹H-NMR spectrum. The $[\alpha]_D^{20}$ values are dependent on the concentration (see *Exper. Part*).

Among these three alcohols, the relative configuration of HO-C(2) and $CH_3-C(6)$ in (+)-5 is *trans*, and *cis* in (-)-2 and in (-)-6. Thus, it was of interest to know, how the dianion of (+)-5 would behave in the reaction with allyl bromide. The reaction was sluggish but otherwise clean, yielding (+)-7 with high stereoselectivity (98:2) and in moderate yield (30%; 38% of starting material were recovered). Compound (+)-7 was in all aspects analogous to the corresponding methyl ester described by *Herradón* and *Seebach* [1] (Scheme 5).

The comparison of the respective molecular rotations suggests a 30% e.e. for (+)-7, whereas optishift experiments lead to a lower value of *ca*. 25% e.e., in good agreement with the 28% e.e. for (-)-2. It is obvious from the ¹H-NMR-spectra, that H-C(2) is in an

¹) Synthesis of (-)-4 demonstrates the practicability of this strategy also for other analogues (cf. [8] [9]).

²) Because of the keto-enol tautomers, the concentrations of which are dependent on trace amounts of H₂O and acid, the $[\alpha]_{D}^{2O}$ value is not a measure of e.e.

axial and H-C(6) in an equatorial position. Differential NOE experiments confirmed the axial orientation of the allyl group at the quaternary center C(1). Thus, (+)-7 prefers a conformation with the two alkyl substituents in an axial and the two polar groups in an equatorial position.

Finally, (+)-1 has been alkylated (NaH, DMF) with homoprenyl iodide to yield (+)-4 ($[\alpha]_D^{20} = +14.1$ (CHCl₃, c = 1.5)). This mode of selectiveness, *i.e.* alkylation from the opposite side with respect to the Me group at C(6) has already been observed [8] [9]. The comparison of the $[\alpha]_D^{20}$ values of (+)- and (-)-4 implies a 23% e.e. for (+)-1.

Conclusion. – It has been shown that yeast reduction of rac-1 is reasonably enantioselective with respect to the starting material. The enantiomer with (6R)-configuration is reduced about 10 times faster than the one with (6S)-configuration. This gives rise to the reduced product with ca. 82% e.e.

Moreover, the yeast reduction is completely product-specific, *i.e.* completely diastereoselective, yielding only one stereoisomer, (+)-2, in contrast to the reduction with NaBH₄ (*Scheme 4*). This seems to be a useful alternative for the enantioselective elaboration of three consecutive stereocenters, even with the moderate yield of 30%.

Alkylation of the dianion of (+)-2 with homoprenyl iodide proceeded analogously to the desmethyl compound [2], but with even higher stereoselectivity, under formation of a valuable quaternary center in 3.

Alkylation of the dianion of the stereoisomer (+)-5 occurs sluggishly but highly selectively (98:2), leading to (+)-7. In (+)-7 and in 3, the relative configuration of the COOEt group and the CH_3 -C(6) is the same, *i.e. cis*, whereas the relative configuration of the COOEt and the OH-C(2) group is *trans* in (+)-7 and *cis* in 3.

We thank Dr. K. Noack (F. Hoffmann-La Roche AG, Basel) for the CD spectra and Mr. J. Märki for the NMR spectra.

Experimental Part

General. See [10].

(+)-*Ethyl* (1R,2S,6R)-2-Hydroxy-6-methylcyclohexanecarboxylate ((+)-2). *Ethyl* 2-methyl-6-oxocyclohexanecarboxylate (1; 100 g, 0,54 mol) 1 kg of baker's yeast, 1.5 kg of sucrose in 10 1 of H₂O were stirred during 65 h. Usual workup [2] yielded 85 g of oil, which, upon chromatography on silica gel, gave 36.4 g (36.4%) of starting material (+)-1 ($[\alpha]_{D}^{20} = +1.15$ (CHCl₃, c = 1.0)) and 28 g (27%) of (+)-2. The latter was distilled at 75–80° 0.05 Torr. $[\alpha]_{D}^{22} = +6.65$ (CHCl₃, c = 1.0). IR (film): 3450, 1725. ¹H-NMR, 4.24–4.50 (*AB*, CH₃CH₂); 3.90–3.84 (*ddd*, J = 9, H_{ax}-C(2)); 2.795 (*dd*, $J_1 \approx J_2 \approx 4$, H_{eq}-C(1)); 1.95–1.79 (m, H_{eq}-C(4), H_{ax}-C(6)); 1.69–1.61 (m, H_{eq}-C(3)); 1.58–1.48 (m, H_{ax}-C(5)); 1.46–1.39 (m, H_{eq}-C(5)); 1.35–1.28 (m, H_{ax}-C(4)); 1.28 (t, CH₃CH₂); 1.03 (d, CH₃-C(6)) $\rightarrow 2.8$ (H_{eq}-C(1)); 1.95–1.75 (H_{ax}-C(6)), 1.89–1.61 (H_{eq}-C(3)); 1.03 (CH₃-C(6)) $\rightarrow 2.8$ (H_{eq}-C(1)); 1.95–1.75 (H_{ax}-C(6)), 1.89–1.61 (H_{eq}-C(3)); 1.03 (CH₃-C(6)) $\rightarrow 2.8$ (H_{eq}-C(1)); 1.95–1.75 (H_{ax}-C(5)), 1.46–1.39 (m, H_{eq}-C(5)). ¹H-NMR experiments in the presence of optishift reagent showed both the *t* of CH₃ and the *d* of CH₃ separated in a ratio of *ca*. 10:1, thus the compound (+)-2 displays an e.e. value of *ca*. 82%. ¹³C-NMR: 173.4 (s); 70.1 (d); 59.8 (t); 51.57 (d); 32.5 (d); 29.8 (t); 29.0 (t); 21.5 (t); 18.7 (q); 14.1 (q). MS: 186 (2, M^+), 168 (8), 158 (21), 143 (16), 141 (16), 123 (14), 115 (100), 95 (73), 87 (96), 69 (66), 55 (44), 41 (66). Anal. calc. for C₁₀H₁₈O₃ (186.25): C 64.49, H 9.47; found: C 64.46, H 9.87.

(-)-*Ethyl* (1S,6 R)-6-*Methyl-2-oxocyclohexanecarboxylate* ((-)-1). Ester (+)-2 (900 mg, 4.8 mmol) was dissolved in 10 ml of Et₂O and oxidized with *Jones*' reagent in acetone. Usual workup and chromatography on silica gel yielded an oil, which, upon distillation (bulb-to-bulb) at *ca*. 90°/0.03 Torr, furnished 0.5 g (55%) of pure (-)-1. $[\alpha]_{D}^{20} = -1.9$ (CHCl₃, *c* = 1.0). $\Delta e(288 \text{ nm}) = 0.26$ (EtOH); $\Delta e(290.8) = +0.29$ (cyclohexane). ¹H-NMR (ketone and enol in a 2:1 ratio): 12.4 (OH); 4.3–4.15 (*m*, CH₃CH₂); 3.3 (*dd*, *J* ≈ 11, 0.5, H–C(1) (ketone)); 2.74–2.66 (*m*, H–C(6) (enol)); 2.51–2.43 (*dm*, *J* ≈ 14, H_{eq}–C(3) (ketone)); 2.34–2.23 (*m*); 2.09–2.0 (*m*); 1.96–1.88 (*m*); 1.9–1.4 (*m*); 1.32, 1.28 (2*t*, CH₃CH₂); 1.07, 1.04 (2*d*, CH₃–C(6)). MS: 184 (26, *M*⁺), 169 (49), 156 (21), 141 (23), 139 (28), 123 (100), 114 (17), 101 (16), 95 (23), 87 (19), 82 (44), 69 (58), 55 (92), 41 (60).

Ethyl (1R,2S,6R)-1-(4-Methylpent-3-enyl)-2-hydroxy-6-methylcyclohexanecarboxylate (3). To the soln. of 0.23 mol of LDA in 120 ml of THF, prepared from 23.1 g (0.23 mol) of (i-Pr)₂NH, 19.6 g (0.105 mol) of (+)-2 were added at -50° in quick succession. After stirring for 10 min at -50° , the soln. of 33.2 g (0.16 mol) of homoprenyl iodide in 70 ml HMPTA was added within 10 min and the temp. was left to rise to 20°. The mixture was refluxed for 10 min and then worked up as usual. The crude product (31 g) was chromatographed on silica gel (700 g) with hexane/Et₂O 1:1 yielding 22.6 g (80%) of 3 (100% pure GLC). Bulb-to-bulb distillation at 100°/0.005 Torr. [α]_D²⁰ = 0 (CHCl₃, c = 1.4). IR (film): 3540, 1735, 1720. ¹H-NMR: 5.18–5.05 (m, H–C(3')); 4.26–4.13 (m, CH₃CH₂); 3.91–3.86 (m, H_{ax}–C(2); becomes dd, $J \approx 12.5$, upon treatment with D₂O); 3.35 (d, $J \approx 10$, OH); 2.02–1.54 (m, 10 H); 1.68, 1.595 (2 br. s, 2 CH₃–C(4')); 1.41–1.30 (m, 1 H_{ax}); 1.32 (t, CH₃CH₂); 1.14 (d, CH₃–C(6)). Double resonance: 1.96 (2 H–C(2')) \rightarrow 5.18–5.05 (m, n–C(3')); 1.14 (CH₃–C(6)) \rightarrow 1.64 (dd, $J_1 \approx 10, 3$, n–C(6)). Differential NOE: 3.91–3.86 (H_{ax} –C(2)) \rightarrow 2.02–1.85 (2 H–C(2)). MS: 268 (1, M^+), 205 (6), 199 (5), 186 (13), 184 (14), 168, (68), 153 (15), 140 (16), 125 (26), 95 (34), 82 (100), 69 (42) 55 (53), 41 (76). Anal. calc. for C₁₆H₂₈O₃ (268, 40): C 71.60, H 10.52; found: C 71.35, H 10.54.

(-)-*Ethyl* (1 R,6 R)-1-(4-Methylpent-3-enyl)-2-oxo-6-methylcyclohexanecarboxylate ((-)-4). To the soln. of 21 g (0.078 mol) of 3 in 250 ml of Et₂O has been treated, at 3°, with the soln. of 23 g (0.078 mol) of Na₂Cr₂O₇, and 23 g (0.23 mol) of conc. H₂SO₄ in 70 ml of H₂O. After usual workup and distillation at 90°/0.03 Torr, 17.3 g (85%) of (-)-4 were isolated. [α]_D² = -53.2 (CHCl₃, *c* = 1.08). $\Delta\epsilon$ (300.3 nm) = -0.91 (EtOH). IR (film): 1740, 1735 (sh), 1715. ¹H-NMR: 5.16-5.09 (*m*, H-C(3')); 4.19-4.11 (*m*, CH₃CH₂); 2.73-2.62 (*ddd*, $J \approx 15$, 15, 8, H_{ax}-C(3)); 2.47-2.39 (*dm*, $J \approx 15$, H_{eq}-C(3)); 2.1-1.6 (*m*, 9 H); 1.68, 1.62 (2 br. *s*, 2 CH₃-C(4')); 1.26 (*t*, CH₃CH₂); 1.16 (*d*, CH₃-C(6)). Double resonance: 1.16 (CH₃-C(6)) \rightarrow 1.90 (*dd*, $J_1 \approx 11$, 4, H_{ax}-C(6)). MS: 221 (4, M^+ – OEt), 184 (24), 169 (100), 123 (47), 82 (32), 69 (16). Anal. calc. for C₁₆H₂₆O₃ (266.38): C 72.14, H 9.84; found: C 72.06, H 9.78.

NaBH₄ Reduction of (+)-Ethyl (1R,6S)-6-Methyl-2-oxocyclohexanecarboxylate ((+)-1) to (+)-Ethyl (1R,2S,6S)- ((-)-5), (-)-Ethyl (1S,2R,6S)- ((-)-2) and (-)-Ethyl (1R,2R,6S)-2-Hydroxy-6-methylcyclohexanecarboxylate ((-)-6). To the soln. of 50 g (0.27 mol) of (+)-1 in 250 ml of EtOH 15 g (0.4 mol) of NaBH₄ were added slowly at 10–15°. After 1 h the mixture was worked up as usual, and 41.6 g of a crude alcohol mixture were isolated. The GLC indicated three isomers in the ratio of 40:30:30. Chromatography on silica gel with hexane/t-BuOMe 2:1 furnished 13 g of (+)-5, 6.9 g of (-)-2, and 4 g of (-)-6. (+)-5: $[\alpha]_{20}^{D0} = +6.13$ (CHCl₃, c = 1.14); $[\alpha]_{20}^{D0} = +6.78$ (CHCl₃, c = 5). IR (film): 3500 (br.), 1735, 1705. The ¹H-NMR was measured in C₆D₆ because of much better separation of signals compared to the spectrum in CDCl₃. ¹H-NMR (C₆D₆): 4.10–4.06 (br. s, H_{ea}-C(2)); 4.0–3.85 (ABm, CH₃CH₂); 3.52–3.49 (br. s, OH); 2.24–2.12 (m, H_{ax}-C(6); \neq at $0.84 \rightarrow ddd$,

 $\begin{array}{l} J_{1} \approx J_{2} \approx 11, \ J_{3} \approx 3); \ 1.99-1.85 \ (m, \ 3 \ H); \ 1.93 \ (dd, \ J \approx 11, \ 2, \ H_{ax}-C(1)); \ 1.55-1.48 \ (dm, \ J_{gem} \approx 13, \ H_{eq}-C(5)); \\ 1.33-1.25 \ (m, \ 1 \ H); \ 1.11-1.0 \ (ddm, \ 1 \ H); \ 0.94 \ (t, \ CH_{3}CH_{2}); \ 0.84 \ (d, \ CH_{3}-C(6)); \ 0.725 \ (dddd, \ J_{gem} \approx 13, \ J_{5ax,6ax}) \approx 11, \ J_{5ax,4eq} \approx 3, \ H_{ax}-C(5)). \ ^{13}C-NMR: \ 175.8 \ (s); \ 66.3 \ (d); \ 60.2 \ (t); \ 54.0 \ (d); \ 33.9 \ (t); \ 31.3 \ (t); \ 28.3 \ (d); \ 20.15 \ (q); \ 19.1 \ (t); \ 13.9 \ (q). \ MS: \ 168 \ (2, \ M^{+} - H_{2}O), \ 158 \ (18, \ M^{-} - C_{2}H_{4}), \ 141 \ (5), \ 123 \ (7), \ 115 \ (100), \ 95 \ (32), \ 87 \ (63), \ 69 \ (29), \ 58 \ (18), \ 55 \ (15), \ 43 \ (74). \end{array}$

(-)-2: $[\alpha]_{D}^{20} = -2.29^{\circ}$ (CHCl₃, c = 1), *i.e.* 28% e.e.

(-)-6: $[\alpha]_{D}^{20} = -2.01$ (CHCl₃, c = 1.04); $[\alpha]_{D}^{20} = -3.2$ (CHCl₃, c = 5.1). IR (film): 3430 (br.), 1730, 1710. ¹H-NMR: 4.25-4.14 (*ABm*, CH₃CH₂); 3.77 (*ddd*, $J_1 \approx J_2 \approx 11$, $J(2ax,2eq) \approx 4$, H_{ax} -C(2)); 2.28-1.18 (br., OH); 2.04-1.97 (*dm*, H_{eq} -C(3)); 1.94 (*dd*, $J(1,2) \approx J(1,6) \approx 11$; H_{ax} -C(1)); 1.78-1.62 (*m*, 3 H); 1.44-1.20 (*m*, 2 H_{ax}); 1.29 (*t*, CH₃CH₂); 1.0-0.89 (*dddd*, 1 H_{ax}); 0.91 (*d*, CH₃-C(6)). ¹³C-NMR: 174.9 (*s*); 71.5 (*d*); 59.99 (*t*); 59.6 (*d*); 34.15 (*d* + *t*); 33.3 (*t*); 23.38 (*t*); 19.65 (*q*); 14.0 (*q*). MS: 168 (3, M – H₂O), 158 (15, M – C₂H₄), 141 (10), 115 (100), 95 (42), 87 (58), 69 (35), 55 (19), 41 (33).

(+)-Ethyl (1S,2S,6S)-1-Allyl-2-hydroxy-6-methylcyclohexanecarboxylate (7). Compound (+)-5, (3.7 g, 0.02 mol) dissolved in 10 ml THF, was added dropwise at -70° to the soln. of 0.1 mol of LDA in 80 ml of THF. Within 5 min, the soln. became slightly yellow, and the temp. rose to -30° . Then, the soln. of 3.6 g (0.03 mol) allyl bromide in 20 ml HMPTA was added quickly $(-30^{\circ} \rightarrow 0^{\circ})$, and the mixture was stirred for 10 min at 0°. After the usual workup, 6.1 g of a crude product was isolated. GLC and TLC indicated a mixture of *ca.* 55% of the starting material and *ca.* 45% of two new compounds in the ratio of *ca.* 98:2. Chromatography on silica gel with hexane/t-BuOMe 2:1 yielded 1.3 g (29%) of 7 and 1.5 g (38%) of (+)-5. $[\alpha]_D^{20} = +25.3$ (CHCl₃, *c* = 1.09). Optishift experiment showed a *ca.* 62:38 ratio, *i.e.* 24% e.e. IR (film): 3540, 3450 (sh), 3070, 1715, 1635. ¹H-NMR : 6.04–5.93 (*m*, H–C(2')); 5.08–4.98 (*m*, 2 H–C(3)); 4.26–4.20 (*m*, H_{ax}–C(2)); 4.22–4.14 (*m*, CH₃CH₂); 3.0–2.96 (br. *s*, OH); 2.675, 2.38 (2ddt, 2 H–C(1')); 2.18–2.09 (ddq, H_{eq}–C(6)); 1.89–1.82 (*m*, H_{eq}–C(3)); 1.7–1.54 (*m*, 4 H); 1.29 (*t*, CH₃CH₂); 1.33–1.26 (*m*, 1 H); 0.945 (*d*, CH₃–C(6)). ¹³C-NMR : 176.0 (*s*, CO); 135.3 (*d*, C(2')); 116.4 (*t*, C(3')); 68.2 (*d*, C(2)); 59.8 (*t*, CH₃CH₂); 54.0 (*s*, C(1)); 36.4 (*t*, C(1')); 3.45 (*d*, C(6)); 28.2 (*t*, C(3)); 27.5 (*t*, C(5)); 19.0 (*t*, C(4)); 15.8 (*q*, CH₃–C(6)); 13.8 (*q*, CH₃–C(2)); 2.18–2.09 (H_{eq}–C(6)); 13.8 (*q*, CH₃–C(2)); 5.08–4.98 (H–C(2')); 2.18–2.09 (H_{eq}–C(6)); 3.26 (12, M⁺), 211 (2), 208 (5), 198 (6), 185 (13), 180 (12), 169 (15), 155 (75), 135 (25), 127 (100), 109 (87), 93 (45), 81 (70), 67 (39), 55 (78), 41 (79).

REFERENCES

- [1] B. Herradón, D. Seebach, Helv. Chim. Acta 1989, 72, 690.
- [2] G. Fráter, Helv. Chim. Acta 1980, 63, 1383.
- [3] G. Fráter, U. Müller, W. Günther, Tetrahedron 1984, 40, 1269.
- [4] a) S.J. Mukerjee, J. Indian Chem. Soc. 1962, 39, 347; b) E. Piers, H.L.A. Tse, Tetrahedron Lett. 1984, 25, 3155.
- [5] B.S. Deol, D.D. Ridley, G.W. Simpson, Aust. J. Chem. 1976, 29, 2459.
- [6] D. Buisson, R. Azerad, Tetrahedron Lett. 1986, 27, 2631.
- [7] D. Seebach, D. Wasmuth, Helv. Chim. Acta 1980, 63, 197.
- [8] L.A. Paquette, P.E. Wiedeman, P.C. Bulman-Page, J. Org. Chem. 1988, 53, 1441.
- [9] E. Piers, M. Llinas-Brunet, J. Org. Chem. 1989, 54, 1483.
- [10] D. Helmlinger, G. Fráter, Helv. Chim. Acta 1989, 72, 1515.